服务名称: | 定量泛素化蛋白质组分析 |
泛素化是指泛素分子在一系列特殊的酶作用下,将细胞内的蛋白质分类,从中选出靶蛋白分子,并对靶蛋白进行特异性修饰的过程。泛素-蛋白酶体系统(Ubiquitin-proteasome system, UPS)介导了真核生物80%~85%的蛋白质降解,该蛋白质降解途径具有依赖ATP、高效、高度选择性的特点。除参与蛋白质降解之外,泛素化修饰还可以直接影响蛋白质的活性和定位。由于泛素化修饰底物蛋白在细胞中的广泛存在,泛素化修饰可以调控包括细胞周期、细胞凋亡、转录调控、DNA损伤修复以及免疫应答等在内的多种细胞活动。
◆ 分析流程
样品经Trypsin酶切,酶切产物由泛素化特异性抗体(Cell Signaling Technology 5562S)进行泛素化肽的富集,富集后由高精度质谱Q Excative(Thermo Scientific)分析,分析数据由生物信息学软件进行数据检索(图1)。
1. 样品 组织样品
2. Trypsin酶切
样品采用溶液内酶切方法酶切[1]
- 泛素化肽的富集
- 仪器
纳升级高效液相色谱:Easy nLC1000(Thermo Scientific)
色谱柱:0.075MM*250MM(3μm RP-C18)
Trap柱:0.1MM*20MM(5μm RP-C18 Thermo scientific EASY column)
数据由MaxQuant 1.2.2.5[3][4]分析,过滤参数 peptide、protein FDR≤0.01,并计算Ubiquitin-peptides score and Probabilities[3][4]。
◆ 实验结果
- 鉴定结果
Protein | Score | Modified sequence | GlyGly (K) Probabilities |
A2WMG6 | 108.53 | AAAAEFLK(gl)SFNK | AAAAEFLK(0.999)SFNK(0.001) |
B8AF09 | 101.72 | AAIKEEAEGK(gl)LK | AAIKEEAEGK(0.995)LK(0.005) |
A2XUU7 | 127.22 | AASFNIIPSSTGAAK(gl)AVGK | AASFNIIPSSTGAAK(0.999)AVGK |
A2WLG6 | 81.338 | LPPPEPK(gl)KPK | LPPPEPK(0.921)K(0.069)PK |
A2WKD5 | 126.71 | AEVK(gl)KPEVK | AEVK(0.999)K(0.001)PEVK |
A2WKD4 | 108.57 | AEVNK(gl)PEVK | AEVNK(1)PEVK |
A2WL58 | 69.122 | AKDDLIGDVVAVDGLIK(gl)PPR | AKDDLIGDVVAVDGLIK(1)PPR |
A2WLV8 | 90.714 | ASK(gl)VLEQLSGQSPVFSK | ASK(1)VLEQLSGQSPVFSK |
A2WKR5 | 98.04 | ATAK(gl)STGIEGR | ATAK(1)STGIEGR |
B8BFV2 | 84.566 | DGGSDYLGK(gl)GVSK | DGGSDYLGK(0.984)GVSK |
Table 2. Identified Ubiquitin-peptides of three experiments
Triplicate Enrichment | A1 | A2 | A3 |
Identified Ubiquitin-Peptides | 1394 | 1359 | 1390 |
Total Identified Peptides | 3305 | 3354 | 3220 |
Enrichment Proportion | 42.17% | 40.52% | 43.17% |
- 泛素化位点分析重复性
- 重复相关性分析(Pearson Correlation)
- 总共鉴定到1505个泛素化肽段,其中80.79%的泛素化肽段(1216 of 1505) 出现在三次实验中。
- 用MaxQuant软件对泛素化肽的强度进行分析,计算三次试验之间的pearson相关系数,发现R值均大于0.9。
- 结论:将泛素化特异性抗体富集技术和高精度串联质谱技术相结合,可以进行大规模的泛素化位点鉴定和修饰定量分析,并具有较好的重复性,在泛素化蛋白质组学的研究中具有很好的应用前景。
◆ 参考文献
- Guo A, Gu H, et al. Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation. Mol Cell Proteomics. 2014; 13(1): 372-87.
- Tong Z, Kim MS, et al. Identification of Candidate Substrates for the Golgi Tul1 E3 Ligase Using Quantitative diGly Proteomic in Yeast. Mol Cell Proteomics. 2014; 13(8): 1979-92.
- Olsen JV, Blagoev B, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006; 127(3): 635-48.
- Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26(12): 1367-72.
- Lundby A, Secher A, et al. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012; 3: 876.