货号: | NAN201003 |
供应商: | 世联博研北京科技有限公司 |
MagneTherm™磁流体热疗分析系统是Nanotherics公司的一种高精度磁流体热疗测试系统该系统通过控制表面功能化的磁性纳米 颗粒产热用于热疗治疗。
MagneTherm™磁流体热疗分析系统使用交变磁场(AMF)和磁纳米颗粒(MNPs)作为肿瘤和其他细胞的加热方法,通过施加一定强度的交变磁场,磁性微粒在交变磁场作用下能吸收电磁波能量转化为热能,系统控制热能局限于肿瘤组织,可导致细胞的凋亡及坏死,从而实现对肿瘤的热 疗和相关研究。该系统还能控制纳米磁流体运动的组织靶向性和细胞特异靶向性,进行细胞外和细胞内多重磁流体热疗分析。
系统原理
通过控制纳米尺度的磁性颗粒定位于肿瘤组织,然后施加一外部交变磁场,使材料因产生磁滞、驰豫或感应涡流而被加热,这些热量再传递到材料周边的肿瘤组织中,使肿瘤组织温度超过42℃并导致细胞的凋亡及坏死,从而实现对肿瘤的治疗。
MagneTherm™磁流体热疗测试系统杀伤肿瘤细胞的主要原理有:
(1)高温使瘤细胞线粒体膜的流动性改变,破坏DNA合成所需的酶系导致瘤细胞死亡;受热后肿瘤组织的pH值降低,增加了对瘤细胞的杀伤作用;
(2)肿瘤血管不规则,散热能力低,增加了高温作用于肿瘤组织的选择性,增加了NK细胞的活性,NK细胞无须经肿瘤抗原激活就有杀伤肿瘤细胞活性,其杀伤作用主要通过其表面的肿瘤细胞受体与肿瘤细胞相结合,释放溶细胞素。
(3)促进树突状细胞(DC)的成熟,未成熟的树突状细胞是成熟树突状细胞的前体,具有强大的抗原摄取能力。但因其表面表达低水平的MHCⅠ、Ⅱ及共刺激 分子,因而不能有效地将抗原提呈给T淋巴细胞,对T细胞的刺激能力降低。成熟的树突状细胞能够显著刺激初始树突状细胞细胞进行增值,因此树突状细胞是机体 免疫应答的始动者。
(4)磁流体热疗还能增加肿瘤细胞表面MHCⅠ表达,从而激活了T细胞介导的抗肿瘤免疫反应。
上图为不同浓度的磁流体 (Fe3O4)在交流磁场中的加热性能对比
产品优势:
该magneTherm ™有超过安全和可耐受的磁场剂量,而且具有很大的灵活性,方便研究者根据要求改变频率和场强来应用不同的细胞和组织体系。可以对细胞(贴壁或悬浮液)和三维细胞培养体系进行磁流体热疗分析。
- 10种不同的标准频率,频率范围从50千赫兹至1兆赫兹
- 拥有高达25毫特斯拉(mT)的磁场强度,且磁场强度可变
- 优良的保温隔热
- 运行PCR小瓶或小管(容量从1毫升到50毫升)
- 可运行35毫米培养皿(培养生物膜/细胞/ 三维组织 )
- 台式装置,占用较小的工作面积
- 低温制冷系统轻便,没有笨重的附属设施
4、应用领域
肿瘤治疗研究
热疗正成为继手术、放疗、化疗和免疫疗法后出现的第五种癌症治疗手段。目前已在临床上得到应用,但是由于其加热受到部位和组织的限制,而且对肿瘤的加热也 不均匀,严重影响了热疗的效果。已有的研究表明,磁热疗可以起到很好的组织内靶向热疗作用,而且也不受肿瘤体积和部位的影响,特别是近年来还发现磁热疗具 有“热旁观者”效应,从而引起人们的广泛关注,热疗用的不同磁性材料更成为国内外的研究热点。
热休克蛋白研究
热疗联合化疗药物能提高机体的免疫功能,避免放、化疗的毒副作用。热休克蛋白(heat shock protein ,HSP),主要参与肿瘤抗原的加工呈递,可作为抗原呈递分子直接将肿瘤的抗原肽呈递给T细胞,激发T细胞介导的细胞免疫,其中HSP70最为引人关注。 机体免疫能力和肿瘤之间的作用是相互的,一方面机体免疫影响肿瘤的发展,另一方面肿瘤也能改变机体的免疫功能。对于恶性肿瘤的治疗,除外科手术外,化疗和 放疗也是目前最主要的治疗方法。但化、放疗除耐药性及剂量受限外,它们在杀伤肿瘤的同时,正常组织和细胞也受到损伤,甚至引起致死性并发症。
药物释放控制研究
控制药物释放的技术可以保证药物缓慢长期的效用,保持最优血液中药物浓度,从而达到最佳的治疗效果。其优点在于利于药物吸收和新陈代谢,优化疗法的效果。 通过控制独特的纳米微粒携带药物输送技术,可以更有效的药物控制释放,将药物渗透到实体肿瘤,通过利用磁性纳米粒药系统结合磁流体热疗分析可以控制药物释 放使得药物在定点区域杀伤靶标癌细胞。
Sophie Laurent, et al. Magnetic ?uid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science 166 (2011) 8–23
磁性纳米颗粒介导的生物膜处理
细菌群落附着到表面上,通过分泌细胞外聚合物基质形成生物膜。生物膜的形成提供了病原性细菌对抗生素的抗性,还会促进微生物慢性感染的发展。超顺磁性氧化 铁纳米颗粒( SPIONs )的应用可以显著降低治疗的生物材料介导的感染几率。SPIONs的磁性靶向性,可允许它们渗透到生物膜内部,通过使用交流磁场加热降低细菌群落的生存能 力。这种处理是非常有效的,特别是对抗生素耐药菌株和抗生素抗性生物膜的治疗中已经显示出其应用前景。
已应用的磁流体纳米颗粒类型包括
- 表面官能化的磁铁矿( Fe3O4)
- 涂覆有银磁赤铁矿(氧化铁)
- 磁铁矿( Fe3O4)
- 钴掺杂磁铁矿
- 铁核心/铁氧化物壳纳米颗粒
- 涂有金的磁赤铁矿(氧化铁)
- 氧化铁纳米晶体( IONCs )
- 胶体Greigite ( Fe3S4 )纳米片
- 系统组成部分
- 包括直流电源供应系统,函数信号发生器,示波器等
直流电源供应系统:24cm (W) x 32cm (D) x 13cm (H)??? 重量: 6 kg
函数信号发生器:22cm (W) x 29cm (D) x 10cm (H)??? 重量: 2.8kg
示波器:35cm (W) x 44cm (D) x 17cm (H)??? 重量: 8 kg
主要配件
17匝线圈
9匝线圈
带有万用表功能的热电偶适配器
示波器
函数信号发生器
温度探头( T型热电偶)
直流稳压电源
聚苯乙烯试管样品
管线和垫片
冷却水连接管
连接电缆
表1 系统所能提供的频率和磁场强度
频率
FREQUENCY最大磁场强度(毫特斯拉)Maximum Field Strength (mT) 最大场强(奥斯特)
Maximum Field Strength (Oersted)最大磁场强度(kA/m)
Maximum Field Strength (kA/m)110 25 250 19.9 168 17 170 13.5 176 23 230 18.3 262 23 230 18.3 335 17 170 13.5 474 11 110 8.7 523 20 200 15.9 633 9 90 7.2 739 16 160 12.7 987 12 120 9.5
· Pankhurst, Q.A., Connolly, J., Jones, S.K. and Dobson, J.J., 2003. Applications of magnetic
nanoparticles in biomedicine. Journal of physics D: Applied physics, 36(13), p.R167. doi:
10.1088/0022-3727/36/13/201
· Krishnan, K.M., 2010. Biomedical nanomagnetics: a spin through possibilities in imaging,
diagnostics, and therapy. Magnetics, IEEE Transactions on, 46(7), pp.2523-2558. doi:
10.1109/TMAG.2010.2046907
· Khandhar, A.P., Ferguson, R.M. and Krishnan, K.M., 2011. Monodispersed magnetite
nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems.
Journal of applied physics, 109(7), p.07B310. doi: 10.1063/1.3556948
· Paolella, A., George, C., Povia, M., Zhang, Y., Krahne, R., Gich, M., Genovese, A., Falqui, A.,
Longobardi, M., Guardia, P. and Pellegrino, T., 2011. Charge transport and electrochemical
properties of colloidal greigite (Fe3S4) nanoplatelets. Chemistry of Materials, 23(16), pp.3762-
3768. doi: 10.1021/cm201531h
· Khandhar, A.P., Ferguson, R.M., Simon, J.A. and Krishnan, K.M., 2012. Enhancing cancer
therapeutics using size-optimized magnetic fluid hyperthermia. Journal of applied physics,
111(7), p.07B306. doi: 10.1063/1.3671427.
· Khandhar, A.P., Ferguson, R.M., Simon, J.A. and Krishnan, K.M., 2012. Tailored magnetic
nanoparticles for optimizing magnetic fluid hyperthermia. Journal of Biomedical Materials
Research Part A, 100(3), pp.728-737. doi: 10.1002/jbm.a.34011
· Roca, A.G., Wiese, B., Timmis, J., Vallejo-Fernandez, G. and O'Grady, K., 2012. Effect of frequency
and field amplitude in magnetic hyperthermia. Magnetics, IEEE Transactions on, 48(11), pp.4054-
4057. doi: 10.1109/TMAG.2012.2201459
· Armijo, L.M., Brandt, Y.I., Mathew, D., Yadav, S., Maestas, S., Rivera, A.C., Cook, N.C., Withers, N.J.,
Smolyakov, G.A., Adolphi, N.L., Monson, T.C., Huber, D.L., Smyth, H.D. and Osiński M., 2012. Iron
oxide nanocrystals for magnetic hyperthermia applications. Nanomaterials, 2(2), pp.134-146.
doi:10.3390/nano2020134
· Armijo, L.M., Brandt, Y.I., Withers, N.J., Plumley, J.B., Cook, N.C., Rivera, A.C., Yadav, S.,
Smolyakov, G.A., Monson, T., Huber, D.L. and Smyth, H.D., 2012. Multifunctional
superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung. In SPIE
BiOS (pp. 82320M-82320M). International Society for Optics and Photonics. doi:10.1117/12.913577
· Armijo, L.M., Brandt, Y.I., Rivera, A.C., Cook, N.C., Plumley, J.B., Withers, N.J., Kopciuch, M.,
Smolyakov, G.A., Huber, D.L., Smyth, H.D. and Osinski, M., 2012. Multifunctional
superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis. In SPIE
Nanosystems in Engineering+ Medicine (pp. 85480E-85480E). International Society for Optics and
Photonics. doi:10.1117/12.943621
· Guardia, P., Di Corato, R., Lartigue, L., Wilhelm, C., Espinosa, A., Garcia-Hernandez, M., Gazeau, F.,
Manna, L. and Pellegrino, T., 2012. Water-soluble iron oxide nanocubes with high values of
specific absorption rate for cancer cell hyperthermia treatment. ACS nano, 6(4), pp.3080-3091.
doi: 10.1021/jp310771p
· De la Presa, P., Luengo, Y., Multigner, M., Costo, R., Morales, M.P., Rivero, G. and Hernando, A.,
2012. Study of heating efficiency as a function of concentration, size, and applied field in γ-
Fe2O3 nanoparticles. The Journal of Physical Chemistry C, 116(48), pp.25602-25610. doi:
10.1021/jp310771p
· Riedinger, A., Guardia, P., Curcio, A., Garcia, M.A., Cingolani, R., Manna, L. and Pellegrino, T., 2013.
Subnanometer local temperature probing and remotely controlled drug release based on azofunctionalized
iron oxide nanoparticles. Nano letters, 13(6), pp.2399-2406. doi: 10.1021/nl400188q
magneTherm™ publications PI-405-35
nanoTherics Ltd, Studio 3 – Unit 3, Silverdale Enterprise Centre, Staffordshire, ST5 6SR. United Kingdom. www.nanotherics.com
· Vallejo-Fernandez, G., Whear, O., Roca, A.G., Hussain, S., Timmis, J., Patel, V. and O'Grady, K.,
2013. Mechanisms of hyperthermia in magnetic nanoparticles. Journal of Physics D: Applied
Physics, 46(31), p.312001. doi:10.1088/0022- 3727/46/4/043001.
· Byrne, J.M., Coker, V.S., Moise, S., Wincott, P.L., Vaughan, D.J., Tuna, F., Arenholz, E., van der
Laan, G., Pattrick, R.A.D., Lloyd, J.R. and Telling, N.D., 2013. Controlled cobalt doping in biogenic
magnetite nanoparticles. Journal of The Royal Society Interface, 10(83), p.20130134.
doi:10.1098/rsif.2013.0134.
· Kim, M., Kim, C.S., Kim, H.J., Yoo, K.H. and Hahn, E., 2013. Effect hyperthermia in CoFe2O4@
MnFe2O4 nanoparticles studied by using field-induced Mössbauer spectroscopy. Journal of the
Korean Physical Society, 63(11), pp.2175-2178.
· Savva, I., Odysseos, A.D., Evaggelou, L., Marinica, O., Vasile, E., Vekas, L., Sarigiannis, Y. and
Krasia-Christoforou, T., 2013. Fabrication, characterization, and evaluation in drug release
properties of magnetoactive poly (ethylene oxide)–poly (l-lactide) electrospun membranes.
Biomacromolecules, 14(12), pp.4436-4446. doi: 10.1021/bm401363v.
· N'Guyen, T.T., Duong, H.T., Basuki, J., Montembault, V., Pascual, S., Guibert, C., Fresnais, J., Boyer,
C., Whittaker, M.R., Davis, T.P. and Fontaine, L., 2013. Functional Iron Oxide Magnetic
Nanoparticles with Hyperthermia‐Induced Drug Release Ability by Using a Combination of
Orthogonal Click Reactions. Angewandte Chemie International Edition, 52(52), pp.14152-14156.
doi: 10.1002/ange.201306724
· Armijo, L.M., Kopciuch, M., Olszόwka, Z., Wawrzyniec, S.J., Rivera, A.C., Plumley, J.B., Cook, N.C.,
Brandt, Y.I., Huber, D.L., Smolyakov, G.A. and Adolphi, N.L., 2014. Delivery of tobramycin coupled
to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and
investigation of its efficacy. In SPIE BiOS (pp. 89550I-89550I). International Society for Optics and
Photonics. doi:10.1117/12.2043340
· Kolosnjaj-Tabi, J., Di Corato, R., Lartigue, L., Marangon, I., Guardia, P., Silva, A.K., Luciani, N.,
Clément, O., Flaud, P., Singh, J.V. and Decuzzi, P., 2014. Heat-generating iron oxide nanocubes:
subtle “destructurators” of the tumoral microenvironment. ACS nano, 8(5), pp.4268-4283. doi:
10.1021/nn405356r
· Kim, S.J., Hyun, S.W., Kim, C.S. and Kim, H.J., 2014. Thermal variation of MgZn nanoferrites for
magnetic hyperthermia. Journal of the Korean Physical Society, 65(4), pp.553-556. doi:
10.3938/jkps.65.553
· Céspedes, E., Byrne, J.M., Farrow, N., Moise, S., Coker, V.S., Bencsik, M., Lloyd, J.R. and Telling,
N.D., 2014. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia
applications. Nanoscale, 6(21), pp.12958-12970. doi:10.1039/C4NR03004D.
· Nesztor, D., Bali, K., Tóth, I.Y., Szekeres, M. and Tombácz, E., 2015. Controlled clustering of
carboxylated SPIONs through polyethylenimine. Journal of Magnetism and Magnetic Materials,
380, pp.144-149. doi: 10.1016/j.jmmm.2014.10.091.
· Malik, V., Goodwill, J., Mallapragada, S., Prozorov, T. and Prozorov, R., 2014. Comparative Study of
Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional
Magnetometry. Magnetics Letters, IEEE, 5, pp.1-4. doi:10.1371/journal.pone.0114271
· Hua, X., Tan, S., Bandara, H.M.H.N., Fu, Y., Liu, S. and Smyth, H.D., 2014. Externally controlled
triggered-release of drug from PLGA micro and nanoparticles. PloS one, 9(12), p.e114271.
doi:10.1371/journal.pone.0114271.
· Peci, T., Dennis, T.J.S. and Baxendale, M., 2015. Iron-filled multiwalled carbon nanotubes
surface-functionalized with paramagnetic Gd (III): A candidate dual-functioning MRI contrast
agent and magnetic hyperthermia structure. Carbon, 87, pp.226-232.
doi:10.1016/j.carbon.2015.01.052.
· Briceño, S., Silva, P., Bramer-Escamilla, W., Zablala, J., Alcala, O., Guari, Y., Larionova, J. and Long,
J., 2015. Magnetic water-soluble rhamnose-coated Mn 1-X Co x Fe 2 O 4 nanoparticles as
potential heating agents for hyperthermia. Biointerface Research in Applied Chemistry, 5(1).
magneTherm™ publications PI-405-35
nanoTherics Ltd, Studio 3 – Unit 3, Silverdale Enterprise Centre, Staffordshire, ST5 6SR. United Kingdom. www.nanotherics.com
· Armijo, L.M., Jain, P., Malagodi, A., Fornelli, F.Z., Hayat, A., Rivera, A.C., French, M., Smyth, H.D.
and Osiński, M., 2015. Inhibition of bacterial growth by iron oxide nanoparticles with and
without attached drug: Have we conquered the antibiotic resistance problem?. In SPIE BiOS
(pp. 93381Q-93381Q). International Society for Optics and Photonics. doi:10.1117/12.2085048.
· Szekeres, M., Illés, E., Janko, C., Farkas, K., Tóth, I.Y., Nesztor, D., Zupkó, I., Földesi, I., Alexiou, C.
and Tombácz, E., 2015. Hemocompatibility and Biomedical Potential of Poly (Gallic Acid)
Coated Iron Oxide Nanoparticles for Theranostic Use. Journal of Nanomedicine &
Nanotechnology, 2015. doi:10.4172/2157-7439.1000252
· Choi, H., Kim, S.J., Choi, E.H. and Kim, C.S., 2015. Study of Hyperthermia Through the Bioplasma
Treatment and Magnetic Properties of Fe 3 O 4 Nanoparticles. Magnetics, IEEE Transactions on,
51(11), pp.1-4. doi: 1109/TMAG.2015.2435062.
· Lemine, O.M., Omri, K., El Mir, L., Velasco, V., Crespo, P., de la Presa, P., Bouzid, H., Youssif, A. and
Hajry, A., 2015. Fe 2 O 3 nanoparticles for magnetic hyperthermia applications. In MRS
Proceedings (Vol. 1779, pp. 7-13). Cambridge University Press. doi:10.1557/opl.2015.697.
· Raniszewski, G., Miaskowski, A. and Wiak, S., 2015. The Application of Carbon Nanotubes in
Magnetic Fluid Hyperthermia. Journal of Nanomaterials, 2015, p.1. doi: 10.1155/9182
· Kim, S.J., Hyun, S.W., Kim, C.S. and Kim, H.J., 2014. Thermal variation of MgZn nanoferrites for
magnetic hyperthermia. Journal of the Korean Physical Society, 65(4), pp.553-556. doi:
10.3938/jkps.65.553
· Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M.A., Hernando, A. and de la Presa,
P., 2016. Improving the magnetic heating by disaggregating nanoparticles. Journal of Alloys and
Compounds, 663, pp.636-644. doi:10.1016/j.jallcom.2015.10.285
· Gangwar, A., Alla, S.K., Srivastava, M., Meena, S.S., Prasadrao, E.V., Mandal, R.K., Yusuf, S.M. and
Prasad, N.K., 2016. Structural and magnetic characterization of Zr-substituted magnetite (Zr x
Fe 3− x O 4, 0≤ x≤ 1). Journal of Magnetism and Magnetic Materials, 401, pp.559-566.
doi:10.1016/j.jmmm.2015.10.087
· Guibert, C., Dupuis, V., Peyre, V. and Fresnais, J., 2015. Hyperthermia of Magnetic Nanoparticles:
Experimental Study of the Role of Aggregation. The Journal of Physical Chemistry C, 119(50),
pp.28148-28154. doi: 10.1021/acs.jpcc.5b07796
· Deka, S., Singh, R.K. and Kannan, S., 2015. In-situ synthesis, structural, magnetic and in vitro
analysis of α-Fe 2 O 3–SiO 2 binary oxides for applications in hyperthermia. Ceramics
International, 41(10), pp.13164-13170. doi:10.1016/j.ceramint.2015.07.091
· Griffete, N., Fresnais, J., Espinosa, A., Wilhelm, C., Bée, A. and Ménager, C., 2015. Design of
magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin
under an alternative magnetic field in athermal conditions. Nanoscale, 7(45), pp.18891-18896.
doi: 10.1039/C5NR06133D
· Arteaga-Cardona, F., Rojas-Rojas, K., Costo, R., Mendez-Rojas, M.A., Hernando, A. and de la Presa,
P., 2016. Improving the magnetic heating by disaggregating nanoparticles. Journal of Alloys and
Compounds, 663, pp.636-644. doi: 10.1016/j.jallcom.2015.10.285
· Teleki, A., Haufe, F.L., Hirt, A.M., Pratsinis, S.E. and Sotiriou, G.A., 2016. Highly scalable
production of uniformly-coated superparamagnetic nanoparticles for triggered drug release
from alginate hydrogels. RSC Advances, 6(26), pp.21503-21510. doi: 10.1039/C6RA03115C
· Carrião, M S., and Bakuzis, A F., 2016. Mean-field and linear regime approach to magnetic
hyperthermia of core-shell nanoparticles: Can tiny nanostructures fight cancer? Nanoscale. doi:
10.1039/C5NR09093H
· Rose, L.C., Bear, J.C., Southern, P., McNaughter, P.D., Piggott, R.B., Parkin, I.P., Qi, S., Hills, B.P.
and Mayes, A.G., 2016. On-demand, magnetic hyperthermia-triggered drug delivery:
optimisation for the GI tract. Journal of Materials Chemistry B, 4(9), pp.1704-1711. doi:
10.1039/C5TB02068A
magneTherm™ publications PI-405-35
nanoTherics Ltd, Studio 3 – Unit 3, Silverdale Enterprise Centre, Staffordshire, ST5 6SR. United Kingdom. www.nanotherics.com
· Gas, P. and Miaskowski, A., 2015. Specifying the ferrofluid parameters important from the
viewpoint of magnetic fluid hyperthermia. In Selected Problems of Electrical Engineering and
Electronics (WZEE), 2015 (pp. 1-6). IEEE. doi: 10.1109/WZEE.2015.7394040
· Whiting, N., Nolan, B. and Kauzlarich, S., 2015. Development of Silicon-Coated
Superparamagnetic Iron Oxide Nanoparticles for Targeted Molecular Imaging and
Hyperthermic Therapy of Prostate Cancer. MD ANDERSON CANCER CENTER HOUSTON TX.
· Subramanian, M., Miaskowski, A., Pearce, G. and Dobson, J., 2015. A coil system for real-time
magnetic fluid hyperthermia microscopy studies. International Journal of Hyperthermia, pp.1-9.
doi: 10.3109/02656736.2015.1104732
· Bandara, H.M.H.N., Nguyen, D., Mogarala, S., Osiñski, M. and Smyth, H.D.C., 2015. Magnetic fields
suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. Biofouling,
31(5), pp.443-457.
· Prasad, N.K., Srivastava, M., Alla, S.K., Danda, J.R. and Divvela, A., 2016. ZrxFe3-xO4 (0.01≤ x≤
1.0) nanoparticles: a possible magnetic in-vivo switch. RSC Advances. doi:
10.1039/C6RA04815C
· Kim, K.S., Kim, J., Lee, J.Y., Matsuda, S., Hideshima, S., Mori, Y., Osaka, T. and Na, K., 2016.
Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and
photodynamic/hyperthermia combination therapy. Nanoscale, 8(22), pp.11625-11634. doi:
10.1039/C6NR02273A
· Lima-Tenório, M.K., Pineda, E.A.G., Ahmad, N.M., Agusti, G., Manzoor, S., Kabbaj, D., Fessi, H. and
Elaissari, A., 2016. Aminodextran polymer-functionalized reactive magnetic emulsions for
potential theranostic applications. Colloids and Surfaces B: Biointerfaces, 145, pp.373-381. doi:
doi:10.1016/j.colsurfb.2016.05.020
· Koutsiouki, K., Angelopoulou, A., Ioannou, E., Voulgari, E., Sergides, A., Magoulas, G.E.,
Bakandritsos, A. and Avgoustakis, K., 2016. TAT Peptide-Conjugated Magnetic PLA-PEG
Nanocapsules for the Targeted Delivery of Paclitaxel: In Vitro. AAPS PharmSciTech, pp.1-13.
doi:10.1208/s12249-016-0560-9
· Subramanian, M., Pearce, G., Guldu, O.K., Tekin, V., Miaskowski, A., Aras, O., Unak, P., 2016. A
Pilot study into the use of FDG mNP as an alternative approach in neuroblastoma cell
hyperthermia. IEEE Transactions on Nanobioscience [accepted for publication]. (99). doi:
10.1109/TNB.2016.2584543
· Srivastava, M., Meena, S.S., Mandal, R.K., Yusuf, S.M. and Prasad, N.K., 2016. AC magnetic field
regulated in-vivo switch of Hf-substituted magnetite (Hf x Fe 3− x O 4, 0.01≤ x≤ 0.8)
nanoparticles. Journal of Alloys and Compounds [accepted for publication]. doi:
10.1016/j.jallcom.2016.06.287
· Espinosa, A., Bugnet, M., Radtke, G., Neveu, S., Botton, G.A., Wilhelm, C. and Abou-Hassan, A.,
2015. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic
hyperthermia?. Nanoscale, 7(45), pp.18872-18877. doi: 10.1039/c5nr06168g
· Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T. and Wilhelm, C., 2016. Duality
of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic
hyperthermia and photothermal bimodal treatment. ACS nano, 10(2), pp.2436-2446. doi:
10.1021/acsnano.5b07249
· Di Corato, R., Béalle, G., Kolosnjaj-Tabi, J., Espinosa, A., Clement, O., Silva, A.K., Menager, C. and
Wilhelm, C., 2015. Combining magnetic hyperthermia and photodynamic therapy for tumor
ablation with photoresponsive magnetic liposomes. ACS nano, 9(3), pp.2904-2916. doi:
10.1021/nn506949t
· Chudzik, B., Miaskowski, A., Surowiec, Z., Czernel, G., Duluk, T., Marczuk, A. and Gagoś, M., 2016.
Effectiveness of magnetic fluid hyperthermia against Candida albicans cells. International
Journal of Hyperthermia, 32(8), pp.842-857. doi: 10.1080/02656736.2016.1212277
magneTherm™ publications PI-405-35
nanoTherics Ltd, Studio 3 – Unit 3, Silverdale Enterprise Centre, Staffordshire, ST5 6SR. United Kingdom. www.nanotherics.com
· Guibert, C., Fresnais, J., Peyre, V. and Dupuis, V., 2017. Magnetic Fluid Hyperthermia probed by
both calorimetric and dynamic hysteresis measurements. Journal of Magnetism and Magnetic
Materials, 421, pp.384-392. doi: 10.1016/j.jmmm.2016.08.015
· Miaskowski, A., Sawicki, B. and Subramanian, M., 2016. Identification of diffusion coefficients in
heat equation on the base of non-adiabatic measurements of ferrofluids. In Computational
Problems of Electrical Engineering (CPEE), 17th International Conference on. IEEE. September.
· Choi, H., Kim, S.J., Kim, C.S. and Choi, E.H., 2016. Characterization of partially-inverted zinc
ferrite with a bio-plasma treatment. Journal of the Korean Physical Society, 69(5), pp.847-851.
doi: 10.3938/jkps.69.847
· Lak, A., Niculaes, D., Anyfantis, G.C., Bertoni, G., Barthel, M.J., Marras, S., Cassani, M., Nitti, S.,
Athanassiou, A., Giannini, C. and Pellegrino, T., 2016. Facile transformation of FeO/Fe3O4 coreshell
nanocubes to Fe3O4via magnetic stimulation. Scientific Reports, 6, p.33295.
· Laili, C R., Hamdan, S. 2016. Heating Behaviour of Iron Oxide Nanomaterials via Magnetic
Nanoparticle Hyperthermia Asian Journal of Chemistry 2675-2679.
dx.doi.org/10.14233/ajchem.2016.20068
· Voulgari, E., Aristides, B., Galtsidis, S., Zoumpourlis, V., Burke, B.P., Clemente, G.S., Cawthorne, C.,
Archibald, S.J., Tucek, J., Zboril, R. and Kantarelou, V., 2016. Synthesis, characterization and in
vivo evaluation of a magnetic cisplatin delivery Nanosystem based on PMAA-graft-PEG
copolymers. Journal of Controlled Release. doi: 10.1016/j.jconrel.2016.10.021.
· Beck, M.M., Lammel, C. and Gleich, B., 2016. Improving Heat Generation of Magnetic
Nanoparticles by Pre-Orientation of Particles in a Static Three Tesla Magnetic Field. Journal of
Magnetism and Magnetic Materials. doi: 10.1016/j.jmmm.2016.11.005
· Crippa, F., Moore, T.L., Mortato, M., Geers, C., Haeni, L., Hirt, A.M., Rothen-Rutishauser, B. and
Petri-Fink, A., 2016. Dynamic and biocompatible thermo-responsive magnetic hydrogels that
respond to an alternating magnetic field. Journal of Magnetism and Magnetic Materials. doi:
10.1016/j.jmmm.2016.11.023
· Benyettou, F., Flores, O., Alonso, J., Ravaux, F., Rezgui, R., Jouiad, M., Nehme, S.I., Parsapur, R.K.,
Olsen, J.C., Selvam, P. and Trabolsi, A., 2016. Mesoporous γ‐Iron Oxide Nanoparticles for
Magnetically Triggered Release of Doxorubicin and Hyperthermia Treatment. Chemistry-A
European Journal, 22(47), pp.17020-17028. doi: 10.1002/chem.201602956
· Choi, H., Lee, S., Kouh, T., Kim, S.J., Kim, C.S. and Hahn, E., 2017. Synthesis and characterization
of Co-Zn ferrite nanoparticles for application to magnetic hyperthermia. Journal of the Korean
Physical Society, 70(1), pp.89-92. doi:10.3938/jkps.70.89
· Choi, H., An, M., Eom, W., Lim, S.W., Shim, I.B., Kim, C.S. and Kim, S.J.,2017. Crystallographic and
magnetic properties of the hyperthermia material CoFe2O4@AlFe2O4. Journal of the Korean
Physical Society, 70(2), pp.173-176. doi:10.3938/jkps.70.173
· Bonvin, D., Arakcheeva, A., Millán, A., Piñol, R., Hofmann, H. and Ebersold, M.M., 2017. Controlling
structural and magnetic properties of IONPs by aqueous synthesis for improved hyperthermia.
RSC Advances, 7(22), pp.13159-13170. doi: 10.1039/C7RA00687J
Patents
· Krishnan, K.M., Ferguson, R.M. and Khandhar, A.P., University of Washington through its center for
commercialization, 2011. Tuned multifunctional magnetic nanoparticles for biomedicine. U.S.
Patent Application 13/805,763. doi: 10.1517/14712598.8.10.1571
· Trabolsi, A. and Benyettou, F., New York University, 2016. Compositions and methods for imaging
and treatment. U.S. Patent 20,160,038,610.
· Riedinger, A., Pellegrino, T., Guardia Giros, P., Curcio, A., Cingolani, R. and Manna, L., Fondazione
Istituto Italiano Di Technologia, 2015. Heat-Sensitive Nanoparticle System. U.S. Patent
20,150,359,887.
· Subramanian, M., Jones, C.N., nanoTherics Limited, 2016. Method and apparatus to enable real
time non-contact in vitro temperature measurement for nanoparticle calorimetry in time
varying magnetic field. GB 1611248.4