产品英文名称: Full-automatic 3D cell&Tissue 、 Mechanical stimulation Culture System |
产品中文名称:全自动基质凝胶支架三维细胞应力加载培养系统 |
产品编号:FX-5000TT 产品品牌:flexcell |
价格/规格:询价 |
FLEXCELL 全自动体外三维细胞组织应力培养系统,它允许研究者创建 Amino、Collagen (Type I or IV)、Elastin、 ProNectin (RGD)、Laminin (YIGSR)多种包被表面的三维基质 |
、水凝胶支架,充分保障三维状态下的细胞组织的水分交换、营养交换和废物排除以及强健的细胞粘附能力。 |
系统的独特性在于,细胞球体在维持三维结构的同时粘附在培养板上,其优势在于操作更简便而且细胞的活性也更高 |
水凝胶是一种状似果冻的物质,具有高弹性、吸水性的聚合物组成的网状物,用于组织工程中,作为帮助细胞生长和发展的支架. |
利用立体水凝胶支架作为平台,观察不同细胞的交互作用,建立组织和器官。同时通过在立体环境中培育细胞,有助于更深入地了解细胞过程和交互作用. |
FLEXCELL 全自动体外三维细胞组织应力培养系统在基质凝胶中进行三维细胞培养、构建人工生物组织,可为三维细胞、组织提供双轴向应力和单轴向应力加载。 |
是当今科研界最先进的逼真模拟体内自然环境(三维环境和细胞组织实时应力环境)的三维细胞培养系统。 |
系统功能亮点: |
在生物材料支架研究方面,与传统的纳米纤维支架和多孔支架相比,水凝胶支架交联网络中含有大量水分,可以很好地供给细胞养分,比纳米纤维支架力学性优越。 |
同时还可以交联生物活性因子调节细胞的生长和分化,因此水凝胶支架可以更好地模拟细胞生长所需的类组织样物理和空间结构, |
并且可塑性高、制作工艺相对简单、临床应用方便。由于胶原蛋白是人体内含量最丰富的蛋白(约占总蛋白25%),是细胞外基质 |
中最常见的蛋白质,胶原蛋白纤维上还有精氨酸一甘氨酸一天冬氨酸等氨基酸序列,可以为细胞表层整合蛋白所识别和贴附。 |
并且胶原蛋白本身是天然材料免疫排斥反应小,而且其交联过程不需其他化学试剂的引入,可自我交联形成凝胶三维支架,其生 |
物相容性更为突出。因此,胶原水凝胶受到人们的广泛关注。 |
水凝胶支架三维培养优越性: |
A)、多微孔支架: 多微孔支架使用方便,但它的孔径(-1 O0 pm)远大于平均细胞直径(一10 pm),因此实际相当于二维培养。 |
B)纳米纤维支架: 纳米纤维支架使用纤维状的细胞外基质蛋白更好地模拟了三维结构, 但是它的力学性能很难达到使用要求。而水凝胶支架因在液态时包裹细胞,固态时形成交联网络, |
可使大量细胞分散黏附于其中,使移植细胞都能接触基质,这才相当于真正意义上的三维培养。 |
而且胶原凝胶是含水凝胶,营养物可以自由进出凝胶网络,使分散于网络 中的细胞都能得到营养,因此胶原水凝胶具有良好的亲水性及细胞相容性。 |
除此之外,液态胶原易于添加各种生长因子,对细胞生长及分化起到重要作用。 |
|
通过Flexcell应力加载系统和三维细胞应力加载传导仪对生长在三维环境下的细胞进行单轴向 或者双轴向的静态或者周期性的应力加载刺激培养, |
在模拟自然体内环境下,更逼真体外模拟癌细胞、肿瘤细胞进行研究。 |
(Apply Strain to Cells in Three-Dimensional Gel Culture) |
|
|
1)三维组织培养模具和三维细胞培养板类型丰富: |
2)具有氨基酸包被表面、胶原(I型或IV)包被表面、弹性蛋白包被表面、ProNectin(RGD)包被表面、层粘连蛋白(YIGSR)包被表面的三维培养板,以增强细胞粘附能力。 |
科研者根据自己的细胞,有针对性的选择适合包被表面三维培养板 |
3)具有可牵拉双轴向和单轴向拉力刺激加载三维组织培养板。
|
1)安全快速的扩增细胞 |
2)在细胞特异性基质中进行三维的细胞高密度培养 |
3)扩增并获得可用于治疗的有活性的原代细胞 |
4)在控制分化状态的条件下扩增干细胞 |
5)向植入的一代细胞提供植入支架 |
6)长期培养分泌细胞 |
7)高效生产重组蛋白和疫苗 |
8)生产优质的糖蛋白 |
9)三维培养与应力刺激(形变)有机结合 |
10)三维凝胶压实自动测量与面积自动计算
|
1)可用于干细胞和胚体扩增及定向分化 |
2)可用于细胞和组织治疗的细胞制备 |
3)可用于克隆细胞,为器官移植做准备(例如hip stem, heart valve, graft) |
4)可用于制备天然的生物制品(例如糖蛋白、病毒、病毒样颗粒)
|
使用Flexcell独有的Flexcell StageFlexer显微附属设备,可在加力刺激的同时实时观察细胞在三维状态下牵拉刺激的反应
|
系统组织部件: |
1. 原装FlexSoft® FX-5000™、Microsoft Windows7、Microsoft Office 2010、Adobe Acrobat的电脑主机 |
2. FX5K™ Tension FlexLink三维细胞可加力刺激培养传导控制仪 |
3. Flexcell BioFlex® baseplate三维细胞可加力刺激培养基板 |
4. Four gaskets四块密封垫片 |
5. Four Arctangle® Loading Stations™线型的三维培养模具 |
6. Four Trough Loaders™线型的三维培养模具装载站 |
7. Four Arctangle® Loading Stations™梯度型的三维培养模具 |
8. Trapezoidal Trough Loaders梯度型的三维培养模具装载站 |
9. 硅胶润滑脂 |
10. Plexiglas密封板 |
11. 干燥过滤器 |
12. FLEX IN 6.4mm外径蓝色硅胶管 13. FLEX OUT 9.5mm外径自然色硅胶管 14. 9.5mm外径蓝色加力泵链接硅胶管 15. 220V/110V电压自适应安全保护插排 |
16. 2个滤水器 |
17. D8C正空负压动力泵 |
18. Collagel® 3D水凝胶配套件 |
Introduction |
Formation of tissues in vitro that are structurally and functionally viable requires several basic conditions, such as 1) cells 2) matrix 3) media and growth factors and 4) mechanical stimulation. |
在体外可行构建组织在结构上和功能上需要一些基本条件,如1)细胞2)矩阵3)培养基和生长因子和4)机械刺激。 |
These conditions are linked to each other and act in conjunction to form a structurally robust tissue that can withstand biomechanical forces. |
这些条件都彼此连接并充当结合,以形成一个能够承受生物机械力的结构强健的组织。 |
As a tissue develops, its cells fabricate an extracellular matrix in a given geometry according to developmental pathway cues. 作为一个组织发开,它的细胞制备按照发育途径制备线索在一个给定几何形状中细胞外基质 |
Several signal transduction pathways may be involved in generating the composition of the extracellular matrix. |
一些信号传导通路可能参与了细胞外基质的组合物的产生形成。 |
Some of these pathways are regulated by mechanical deformation of cell matrix and transmitted into the cell via membrane bound proteins such as integrins, focal adhesion complexes (mechanosensory complex), cell adhesion molecules and ion channels. Cells can also respond to ligands, such as cytokines, hormones or growth factors that are released as a result of matrix deformation. |
这些通路中有些是由细胞基质的机械变形调节,通过膜结合的蛋白质传递到细胞,如整合素,粘着斑复合物(mechanosensory复杂),细胞粘附分子和离子通道。细胞还可以响应配体,如细胞因子,***或释放为基质的变形而产生的生长因子。 |
In order to maintain the integrity and strength of musculoskeletal tissues, the cells may require maintaining a certain level of intrinsic strain. In the absence of this intrinsic strain, the tissue will lose its strength leading to failures or fractures. |
It is well accepted that immobilization of limbs, bed rest or a reduction in the intrinsic strain level in a tissue leads to bone mineral loss, tissue atrophy, weakness and in general, a reduction in anabolic activity and an increase in catabolic activity. Physical activity, on the other hand, results in anabolic effects including an increase in biomechanical strength and an increase in the intrinsic strain in a tissue. |
To generate a tissue in vitro that is more or less equivalent to the native tissues, it is of utmost importance to create an environment that would mimic the in vivo conditions. Culturing cells in a mechanically active environment increases cell metabolism and alters cell shape and other properties. Therefore, it is vital to create and maintain a mechanically active environment (i.e., tension, shear stress or compression) for the cells during the formation of tissues in vitro. In addition to the dynamic environment, culturing cells in 3D environment more closely simulates the native environment than a static 2D culture method. |
The size and shape of the tissue matrix would also directly affect the type, magnitude, direction and distribution of physiological forces within the tissue matrix. The composition of tissue may also depend on the types of forces that the tissue undergoes. Depending on the anatomical location, some tissues may experience both tensile and compressive forces within the tissue leading to multiple compositions. For example, the midsubstance (where tensile forces exist) of an Achilles tendon is comprised of dense fibrous connective tissue, while the area where tendon presses against calcaneus (where compressive forces exist) is comprised of fibrocartilaginous tissue. The shape of the tissue also plays a major role in the location of its failure. Most failures in Achilles tendons occur at the calcaneal junction where it joins the bone and has the least thickness. Therefore, it is clear that the native shape of the tissue needs to be simulated in vitro to facilitate studying the failure mechanism as well as the healing mechanism of tissues. Flexcells Tissue Train® Culture System was developed to address these segments of the culture world, providing both a 3D matrix, dynamic strain to cells and matrix, and multiple geometries for creating bioartificial tissues of different shapes (i.e., linear, trapezoidal, and circular). |
|
Tissue Train® System |
Flexcells Tissue Train™ Culture System is a stand-alone 3D culture system that allows investigators to create 3D geometries for cell culture in a matrix gel or allow the cells to build a self-assembled matrix that connects to the anchors in a Tissue Train® culture plate. Flexcell currently has molds and/or plates for creating three different shaped hydrogels: linear, trapezoidal, and circular. The Tissue Train®System can be used to create bioartificial constructs with cells from the cardiac, musculoskeletal, dermal, lung, gastrointestinal, bone marrow, and adipose tissues to name a few. (See our Publication Database to see how researchers are currently using this system). |
Figure 1 illustrates how a linear bioartificial tissue (BAT) is created with the Tissue Train® Culture System. In brief, a Tissue Train® culture plate is set atop a Trough Loader™ and a vacuum is applied with the FX-5000™ Tension System pulling the flexible-bottomed rubber membrane of the culture plate downward into the linear trough. A cell and gel matrix suspension is dispensed into the trough between the two anchor stems with a pipette. After polymerization, the vacuum is released and a linear hydrogel, or bioartificial tissue, has been created that is attached to the culture plate via the anchor stems at the east and west poles. |
|
Figure 1. Bioartificial tissue development with the Tissue Train® Culture System. |
The FX-5000™ Tension System provides the investigator with a tool to apply regulated uniaxial or equibiaxial strain to the growing bioartificial tissues. A user can define a frequency, elongation and duration of strain in a regimen that simulates the strain environment of the native tissue in the body (see Applying Mechanical Load to Cells in 3D Culture for further information). |
View video Tissue Train® Bioartificial Tissue Fabrication with Uniaxial Strain |
Additionally, the cells will remodel their extracellular matrix over time (Figure 2). A measure of this remodeling is gel compaction over time. ScanFlex™ is an automated image collection system that allows users to periodically scan items placed on a scanner bed. The ScanFlex™ software controls a digital scanner and allows users to program the number of times and the time intervals when digital scans are taken. When used in conjunction with the Tissue Train® culture plates, ScanFlex™ can be used to determine the change in area of a bioartificial tissue. Furthermore, the area of a BAT can be measured using the XyFlex™ image analysis software. XyFlex™ software allows the user to automatically measure the BAT area in a large sequence of images. |
|
Figure 2. Illustration of gel compaction in a bioartificial tissue. |
TISSUE TRAIN®AND 3D CULTURE SYSTEM 应用文献
|
environment. J Struct Biol 180(1):17-25, 2012. doi: 10.1016/j.jsb.2012.05.004. Epub 2012 May 15.
|
gels. J Appl Physiol 102(3):1152-60, 2007.
|
bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.
|
modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
|
compaction by extracellular ATP is MAPK and NF-κB pathways dependent. Exp Cell Res |
315(11):1990-2000, 2009. Epub 2009 Feb 23.
|
|
|
|
|
CIRCULAR FOAM TISSUE TRAIN® CULTURE PLATES (CIRCULAR泡沫材料组织TRAIN®培养板培养板) | ||
使用柔性底6孔培养板,用于创建和提供双轴应变到3D细胞种子凝胶构造与Flexcell组织Train®培养体系。 可用矩阵粘结泡沫圆形锚,5种不同包被培养表面:氨基酸,胶原蛋白(I型或IV型),弹力蛋白,ProNectin(RGD)和层粘连蛋白(YIGSR)。 | ||
编号产品 | 产品名称 | |
TTCF-4001U-Case | TTCF-4001U-Each | Circular Foam Culture Plate-Untreated |
TTCF-4001A-Case | TTCF-4001A-Each | Circular Foam Culture Plate-Amino |
TTCF-4001C-Case | TTCF-4001C-Each | Circular Foam Culture Plate-Collagen Type I |
TTCF-4001C(IV)-Case | TTCF-4001C(IV)-Each | Circular Foam Culture Plate-Collagen Type IV |
TTCF-4001E-Case | TTCF-4001E-Each | Circular Foam Culture Plate-Elastin |
TTCF-4001P-Case | TTCF-4001P-Each | Circular Foam Culture Plate-ProNectin |
TTCF-4001L-Case | TTCF-4001L-Each | Circular Foam Culture Plate-Laminin |
TISSUE TRAIN® CULTURE PLATES (组织TRAIN®培养板培养板) | ||
编号产品 | 产品名称 | |
Foruse with Standard(线形) Trough Loaders | ||
创造和提供3D单轴应变种子细胞凝胶结构,灵活6孔培养板底用Flexcell组织列车培养系统*。 可用基质键合尼龙网锚,5种不同包被培养表面:氨基酸,胶原蛋白(I型或IV型),弹力蛋白,ProNectin(RGD)和层粘连蛋白(YIGSR)。 | ||
TT-4001U-Case | TT-4001U-Each | Tissue Train Culture Plate-Untreated |
TT-4001A-Case | TT-4001A-Each | Tissue Train Culture Plate-Amino |
TT-4001C-Case | TT-4001C-Each | Tissue Train Culture Plate-Collagen Type I |
TT-4001C(IV)-Case | TT-4001C(IV)-Each | Tissue Train Culture Plate-Collagen Type IV |
TT-4001E-Case | TT-4001E-Each | Tissue Train Culture Plate-Elastin |
TT-4001P-Case | TT-4001P-Each | Tissue Train Culture Plate-ProNectin |
TT-4001L-Case | TT-4001L-Each | Tissue Train Culture Plate-Laminin |
Foruse with Trapezoidal(梯形) Trough Loaders | ||
使用柔性底6孔培养板,用于创建和提供梯形3D细胞种子凝胶结构单轴应变与Flexcell组织Train®培养体系*。 可用基质键合尼龙网锚,5种不同包被培养表面:氨基酸,胶原蛋白(I型或IV型),弹力蛋白,ProNectin(RGD)和层粘连蛋白(YIGSR)。 | ||
编号产品 | 产品名称 | |
TTTP-4001U-Case | TTTP-4001U-Each | Trapezoidal TT Culture Plate-Untreated |
TTTP-4001A-Case | TTTP-4001A-Each | Trapezoidal TT Culture Plate-Amino |
TTTP-4001C-Case | TTTP-4001C-Each | Trapezoidal TT Culture Plate-Collagen Type I |
TTTP-4001C(IV)-Case | TTTP-4001C(IV)-Each | Trapezoidal TT Culture Plate-Collagen Type IV |
TTTP-4001E-Case | TTTP-4001E-Each | Trapezoidal TT Culture Plate-Elastin |
TTTP-4001P-Case | TTTP-4001P-Each | Trapezoidal TT Culture Plate-ProNectin |
TTTP-4001L-Case | TTTP-4001L-Each | Trapezoidal TT Culture Plate-Laminin |