勒冈大学的研究人员已经发现了一种由斑马鱼中常见的肠道细菌分泌的新蛋白质,可以减少肠道炎症并延缓脓毒性休克引起的死亡。通过研究蛋白质,气单胞菌免疫调节剂(AimA)如何使细菌和它们的幼虫斑马鱼宿主相互受益,研究小组的实验揭示了动物及其常驻微生物如何协商缓和的炎症反应水平。一篇关于机械微生物组研究的特刊 “ eLife ”中出现了一篇关于这项研究的论文,“具有脂质运载蛋白样结构域的细菌免疫调节蛋白促进宿主 - 细菌共生” 。“关于【详细】
来自Stowers医学研究所的研究人员创造了一种以快速,有效和信息丰富的方式定义个体蛋白质关联的新方法。这些发现发表在2019年3月8日的Nature Communications期刊上,展示了由Stowers研究人员创建的拓扑评分(TopS)算法如何通过组合数据集来识别聚集在一起的蛋白质。该方法类似于查看社区中所有个人的活动和交互,然后选择最有意义的交互,其中一些可能非常罕见。研究人员正在寻找两个人的生物学等价物,这两个人可能是整个社区中参与重要互动的唯一两个人。 这不仅有助于研究人【详细】
众所周知,有多种血浆蛋白在伤口愈合过程中起着重要作用。然而,在临床能力中使用这些分子的能力受到限制。虽然现在,德国不来梅大学的研究人员已经使用血液中的血浆蛋白来开发一种制作伤口愈合组织支架的新方法。研究小组的新支架可以与表面连接或分离,用于体外实验室组织研究或直接应用于体内。“我们使用的蛋白质被称为纤维蛋白原,”不来梅大学生物物理研究所教授兼组长,高级研究员DorotheaBrüggemann博士解释说。“它是一种在血浆中发现的细胞外糖蛋白【详细】
A * STAR研究发现,在细胞重编程过程中切换调节基因表达的蛋白质的功能可确保细胞命运转化。了解如何维持细胞命运是提高诱导多能干细胞iPSCs从患者体细胞中获得并分化成组织特异性细胞类型的效率的关键,用于治疗白血病或脊髓损伤等医学病症。组蛋白变体H3.3是一种先前已被证明可在细胞分化过程中激活基因转录的蛋白质,但其在细胞命运转换中的确切作用尚不清楚。新加坡A * STAR分子与细胞生物学研究所的Jonathan Yuin-Han Loh及其同事研究了H3.3在小鼠胚胎成纤维细胞转化为【详细】
蛋白质不仅是制造强壮肌肉所必需的,它们还是在学习过程中在神经元之间建立新联系所必需的。蛋白质合成中的缺陷导致学习,记忆和大脑发育方面的缺陷。在人体内有大约20,000蛋白质制成,破坏,在不同的细胞类型在不同的时间不同的速率重拍。通过称为核糖体的复杂分子机器在所有活细胞中合成蛋白质。1974年诺贝尔生理学和医学奖授予A Claude,CD Duve和GE Palade,以发现核糖体。在此之后,经过三十年的激烈研究,V Ramakrishnan,TA Steitz和AE Yonath赢得了【详细】
转运蛋白ABCG2属于ATP结合盒(ABC)家族。蛋白质在多种组织和组织屏障内的细胞质膜中表达,包括血脑,血睾和母胎屏障。蛋白质可由ATP提供动力以转移内源底物,影响许多药物的药代动力学并防止多种异生素,包括抗癌药物,尤其是乳腺癌。ABCG2通常被称为乳腺癌耐药蛋白,其中先前的研究揭示了ABCG2结构和ABCG2抑制的结构基础用小分子和抗体。ABCG2的底物识别机制以及ATP驱动的运输能力仍有待确定。在现在发表在Nature上的一份新报告中,Ioannis Manolaridis及其同【详细】
异源三聚体G蛋白在G蛋白偶联受体信号传导中是重要的,其在检测各种环境刺激中起很多作用,包括激素,神经递质,光,气味和化学信号。G蛋白功能通过与Gip1的相互作用来调节,Gip1是一种隔离G蛋白以阻断信号传导过程的蛋白质。许多研究试图了解G蛋白和Gip1之间相互作用的机制; 到目前为止,没有人提供过明确的解释。在Nature Communications发表的一项新研究中,由大阪大学专家领导的研究小组研究了Gip1的结构,以更好地了解Gip1如何隔离细胞质中的G蛋白,远离其在细胞膜上的主【详细】
弗莱堡大学的研究人员报告了细胞内部将蛋白质转运到线粒体的机制。他们的研究现已发表在科学期刊Cell Reports上。线粒体负责细胞内的重要过程,包括细胞代谢产生的能量。当它们的生物发生和功能发生缺陷时,这可能在中枢神经系统或心脏中引起严重的疾病。为了正常运作,线粒体依赖于大约1000种蛋白质,这些蛋白质是从细胞质(细胞内的液体)中导入的。这种液体中的核糖体是细胞的蛋白质工厂,它们也为线粒体产生蛋白质的前体形式。然后这些前体蛋白由分子伴侣护送从核糖体到线粒体。伴侣蛋白促进其他蛋白质折叠【详细】
蛋白质是我们细胞的主力,执行必要的任务,以保持我们的细胞 - 和我们的身体 - 正常运作。但蛋白质只有折叠成正确的形状才能完成它们的工作。当蛋白质错误折叠时,细胞可以尝试通过重新折叠蛋白质或破坏蛋白质来挽救这种情况,但细胞如何做出这个决定一直是个谜。在最近发表在“ 自然”杂志上的一项研究中,朱迪思·弗莱曼和她的团队确定了这一决定中的关键分子。她将这一基本知识视为治疗许多人类疾病的第一步,包括阿尔茨海默氏症和帕金森氏症等神经退行性疾病,以及当细胞无法【详细】
HIV-1表面有大量的糖类对HIV-1表面的蛋白质Env进行了伪装,使得HIV-1可以避开人体的体液免疫。而大多数HIV-1隔离群会由自然的序列突变产生“糖洞”,这些糖洞可能将其下的蛋白表面暴露给免疫系统。为了验证这个猜想,近日来自北卡罗来纳大学教堂山分校、宾州州立大学等单位的研究人员通过计算机设计了一些蛋白表位,可以激活兔子产生对抗HIV-1的抗体,相关研究成果于2019年2月27日发表在《Nature Communications》上,题目为“R【详细】
休眠细菌是否开始繁殖并非偶然。相反,他们只是在等待来自细胞内部的单个蛋白质的清晰信号。ETH的研究人员现在已经破译了这背后的分子机制。细菌能够极快地生长,但只有在条件合适的情况下才能生长。如果它们缺乏营养,或者太冷或太干,它们将进入休眠状态等待它。到目前为止,通常使用快乐生长的种群来研究个体细菌细胞如何决定是否分裂的问题。但是到目前为止,没有人能够说明是什么促使休眠细菌醒来并开始分裂。 现在苏黎世联邦理工学院分子系统生物学研究所所长Uwe Sauer和他的研究团队已经解开了这个谜团。他【详细】
当Greg Bowman展示他研究的蛋白质的幻灯片时,他们的三维形状和折叠模式在大屏幕上播放动画。当他描述这些分子时,可能很容易错过这样一个事实:他无法真正看到自己的表现,至少不是观众的表现方式。鲍曼,圣路易斯华盛顿大学医学院生物化学和分子生物物理学助理教授,在法律上是盲人。他现在还领导着世界上最大的众包计算生物学项目之一。这项工作旨在了解蛋白质如何折叠成适当的形状以及它们在保持身体健康的工作中所经历的结构运动。蛋白质是重要的细胞机器,了解它们如何组装和功能 - 或故障 - 可以揭示医【详细】
科学家说他们已经大大简化了无细胞蛋白质合成(CFPS)的方法,这种技术可能成为医学研究的基础。CFPS提供了在几小时内在试管中生物合成蛋白质的新能力,而不需要活细胞。根据Cal Poly,San Luis Obispo的团队,这种方法为追求高通量测试,生物传感器构建,代谢工程等的研究人员提供了对蛋白质生产的新控制。“这种生物技术利用试管中的遗传密码,直接进入传统上锁定在细胞内的生物机器,”生物化学教授Javin Oza博士说。“这使科学家和工程师能够【详细】
X射线和电子显微镜技术有助于展现蛋白质伴侣的故事。 X射线晶体学和低温电子显微镜(cryo-EM)的组合有助于协同努力以获得真菌蛋白质Hsp104的最高分辨率结构,其可用于阻止某些退行性疾病的形成。该团队的成员包括来自美国能源部(DOE)阿贡国家实验室的研究人员,他们也证实了蛋白质形成的六聚体的螺旋结构,曾经被认为是平坦的。结果发表在2018年12月27日的Structure上。Hsp104是一种六聚体AAA +蛋白质,称为伴侣蛋白,有助于蛋白质的自然折叠过程,从而实现正常的细胞功能。【详细】
不列颠哥伦比亚大学的科学家发现了一种新的蛋白质“转换”,可以阻止血液中毒或败血症的进展,并增加威胁生命的疾病的存活机会。脓毒症是一种炎症性疾病,当身体对感染的反应损伤其自身的组织和器官时,每年导致约1400万人死亡。在最近发表在Immunity上的一项研究中,研究人员研究了一种名为ABCF1的蛋白质在调节脓毒症进展中的作用。 “脓毒症引发体内炎症的不受控制的链式反应,导致组织损伤,器官衰竭和死亡,”Hitesh Arora说,他是迈克尔史【详细】
在我们的身体中,蛋白质几乎完成所有必需的过程,蛋白质故障导致许多疾病。为了研究蛋白质的功能,研究人员将其从细胞中移除,然后分析其后果。目前它们通常可以使用的两种方法是CRISPR / Cas的基因组编辑和RNA干扰。它们分别作用于DNA或RNA的水平。然而,它们对蛋白质含量的影响是间接的并且需要时间。来自德国和英国的科学家现在提出了一种名为Trim-Away的新方法,该方法可以直接快速地从任何细胞类型中消耗蛋白质。由于Trim-Away可以区分蛋白质的不同变体,它也为疾病的治疗开辟了新的场所。在【详细】
Charité - UniversitätsmedizinBerlin的研究人员在分子水平上证明了特定蛋白质如何将光信号转换成细胞信息。他们的研究结果扩大了对植物和细菌如何适应光照条件变化的理解,光照条件调节光合作用等基本过程。他们的研究成果发表在Nature Communications上。植物色素是负责将光转换成细胞信息的蛋白质。这些光感受器存在于植物,真菌和细菌中,它们利用光来调节基本的生理过程。植物色素包含一种称为发色团的光敏四吡咯分子,当暴露于非常特定【详细】
科学家发现了一种可能成为罕见疾病的蛋白质的意外新作用。一种叫做p62的蛋白质被分子剪刀切碎,帮助细胞意识到它们“饥饿”,鼓励它们分解并消耗细胞中的旧物质。这有助于他们保持健康并抵御感染。这一发现可以帮助研究人员设计更好的药物来帮助患有佩吉特骨病,运动神经元疾病或某些类型的痴呆症的患者。制造p62蛋白的基因突变通常存在于患有这些疾病的患者中。伦敦帝国理工学院的科学家今天在“ 科学信号 ”杂志上发表了他们的研究。他们的研究结果显示,p62的切【详细】
蜂王浆中的活性蛋白质成分有助于蜜蜂创造新的王后。斯坦福大学的研究人员已经在哺乳动物身上发现了一种类似的蛋白质,这种蛋白质可以保持培养的胚胎干细一种与蜜蜂蜂王浆的活性成分结构相似的哺乳动物蛋白质 - 制作蜂王浆,帮助工蜂为蜂巢提升一个新的产卵女神,作为小鼠胚胎干细胞的青春之泉,斯坦福大学医学院的研究人员。蛋白质使细胞保持多能性,这意味着它们可以在通常会引发细胞发育成特化细胞的条件下成为体内的任何细胞。意外的发现可能会引发关于蜂王浆再生能力的数千年争论的火焰。更重要的是,这一发现揭示了多能【详细】
人们一直对生活着迷。我们梦想揭露它的所有神秘面纱,甚至寻找其他行星试图在那里找到某种形式的生命。在科学甚至存在之前,世界各地的哲学都试图定义和理解生命。但实际上可以在我们的鼻子下找到一些答案 - 或者更确切地说,就在显微镜下。那是因为整个世界都存在于生物分子水平。没有它,我们所知道和理解的生活将不存在。 蛋白质是这个生物分子世界的关键参与者。他们通过相互结合或与其他分子结合来实现其基因预编程目标。例如,称为血红蛋白的蛋白质复合物将氧气输送到我们身体的每个细胞以进行呼吸。几乎每一个行动都【详细】